Working With the Unified Command (UC): Suggestions for the Ocean Observing Community from an Oil Spill Responder

Buzz Martin
Director of R&D and Scientific Support
Oil Spill Prevention & Response
Texas General Land Office
What Is ICS?

• The Incident Command System:
 – Is a standardized, on-scene, all-hazard incident management concept.
 – Allows its users to adopt an integrated organizational structure to match the complexities and demands of single or multiple incidents without being hindered by jurisdictional boundaries.

FEMA IS-100 on line course
http://training.fema.gov/IS/NIMS.asp
What is the Unified Command?

• Unified Command is an ICS that brings together the "Incident Commanders" of all major organizations involved in the incident in order to coordinate an effective response while at the same time carrying out their own jurisdictional responsibilities. In oil spills, the Unified Command includes the Responsible Party (RP) along with a state on scene commander (SOSC) and a Federal on scene commander (FOSC).

• The goal is “Unity of Effort” that is driven by objectives
• In practice, this means focus on fixing the problem, not the blame
Examples of what UC is looking for in trajectories:

• Generalizations (descriptions in broad brush strokes) about what areas are threatened ... something they can understand in seconds.

• 2 or 3 day, simplified trajectories (not particles and not 10 day forecasts)

• Shoreline impact maps.

• Something planners can use to create strategies that protect resources at risk and minimize regret.
Nearshore
Surface Oil Forecast
Deepwater Horizon MC252

NOAA/NOS/OR&R

Nearshore

Estimate for: 1200 CDT, Monday, 7/05/10
Date Prepared: 2100 CDT, Friday, 7/02/10

This forecast is based on the NWS spot forecast from Friday, July 2 PM. Currents were obtained from several models (NOAA Gulf of Mexico, West Florida Shelf/USF, TGLO/TAMU, NAVO/NRL) and HFR measurements. The model was initialized from Friday satellite imagery analysis (NOAA/NESDIS) and overflights. The leading edge may contain tarballs that are not readily observable from the imagery (hence not included in the model initialization). Oil near bay inlets could be brought into that bay by local tidal currents.
Minimum Regret Approach to Trajectory Analysis

• Explore the sensitivity of our trajectory forecast to errors in the input data
• Helps us think through the implications of other less likely, but still plausible scenarios
• Tends to expand the area we consider at risk, but minimizes the regret we would feel about our course of action (protection strategies) because our course of action now accounts for a broader scenario.
Suggestions

• Have your data in a GNOME-ready format such as netCDF.
• Post your wind and current observations and forecasts in both graphic and tabular format.
• Avoid posting your trajectories, it confuses the public and it can become an unnecessary distraction for the Unified Command where discrepancies occur.
• Work with the NOAA trajectory analysts. They can incorporate your concerns in their analysis.
• Know your model’s weaknesses and be upfront about it when talking with the NOAA trajectory analysts.